Descent and Galois theory for Hopf categories

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Hopf-Galois extensions of linear categories

We continue the investigation of H-Galois extensions of linear categories, where H is a Hopf algebra. In our main result, the Theorem 2.2, we characterize this class of extensions in the case when H is finite dimensional. As an application, we prove a version of the Duality Theorem for crossed products with invertible cocycle. Introduction The duality theorems for actions and coactions originat...

متن کامل

Hopf Galois Extension in Braided Tensor Categories

The relation between crossed product and H-Galois extension in braided tensor categories is established. It is shown that A = B#σH is a crossed product algebra if and only if the extension A/B is Galois, the inverse can of the canonical morphism can factors through object A⊗B A and A is isomorphic as left B-modules and right H-comodules to B⊗H in braided tensor categories. For the Yetter-Drinfe...

متن کامل

From Galois to Hopf Galois: Theory and Practice

Hopf Galois theory expands the classical Galois theory by considering the Galois property in terms of the action of the group algebra k[G] on K/k and then replacing it by the action of a Hopf algebra. We review the case of separable extensions where the Hopf Galois property admits a group-theoretical formulation suitable for counting and classifying, and also to perform explicit computations an...

متن کامل

On the Galois Correspondence Theorem in Separable Hopf Galois Theory

In this paper we present a reformulation of the Galois correspondence theorem of Hopf Galois theory in terms of groups carrying farther the description of Greither and Pareigis. We prove that the class of Hopf Galois extensions for which the Galois correspondence is bijective is larger than the class of almost classically Galois extensions but not equal to the whole class. We show as well that ...

متن کامل

Homotopy Theory of Hopf Galois Extensions

We introduce the concept of homotopy equivalence for Hopf Galois extensions and make a systematic study of it. As an application we determine all H-Galois extensions up to homotopy equivalence in the case when H is a Drinfeld-Jimbo quantum group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra and Its Applications

سال: 2018

ISSN: 0219-4988,1793-6829

DOI: 10.1142/s0219498818501207